
Solution

QN Correct Answer Marking Scheme Note

2A <int>
int
this->*pmf

Output:
Calling the Function:4

 01 Marks for filling each
blank

 02 Mark for output

The answer of this question
is unique. Thus either full
marks will be awarded or
ZERO.

2B p = new T*[CAP]
delete[] p;
template<typename M>
delete obj;

 02 Marks for filling each
blank

3A The program must have
following components.

 A base class is inherited by
two intermediate classes

 A final derived class
inherits from both
intermediate classes

 This creates ambiguity
because two copies of the
base class exist. Thus the
multiple inheritance must
be done through virtual
base classes.

 02 Marks for base class

 04 Marks for
intermediate class

 01 Mark for final derived
class.

 Multiple solutions are
possible, but number of
classes and their
relationship (diamond
structure) will be unique.
Thus evaluate for
structure of the program.

 Deduct 04 marks, if
virtual base class is not
used in multiple
inheritance.

3B (i) A()
 Caught int in risky()
 ~A()
 Unknown

(ii) A()
 ~A()
 MyError occurred

 02 marks for the correct
output of part(i)

 01 marks for the
explanation of part (i)

 02 marks for the correct
output of part (ii)

 01 marks for the
explanation of part (ii)

 Deduct full marks, if
outputs are not correct.

 Give full marks in
explanation.

 If output is correct, but in
wrong sequence, then
deduct full marks of the
output.

Selected AnswerKeys

Q4 Write a C++ program to define a class FLOAT with:

A. Two private integer variables: mantissa and exponent and a parameterized constructor with
default parameters to initialize both members. Write appropriate getter and setter methods.

B. Overload the following operators as member functions

i. Arithmetic operators: + and * (to achieve floating point arithmetic)

ii. Comparison operator: ==

iii. Assignment operator: =

C. Overload arithmetic operators (+, *) to work between a FLOAT object and an integer (int)
using a friend function.

D. Write a main() function to demonstrate:

i. All the arithmetic operations between two FLOAT objects

ii. Comparison using ==

iii. Assignment using =

iv. Arithmetic between a FLOAT object and an int

Note: (i) You must perform all arithmetic and comparison operations directly on the mantissa
and exponent integers stored inside the class FLOAT.

(ii) You must NOT convert the FLOAT numbers into C++ built-in floating-point types (like float
or double) within any of your operator implementations.

(iii) A FLOAT number N is internally represented as N=mantissa×10exponent. For example, −0.56
is represented as mantissa=−56 and exponent=−2, while 10.234 is represented as
mantissa=10234 and exponent=−3. Assume the addition of these numbers will be a FLOAT X,
then:

exponent(X) = min (exponent(-.56) , exponent(10.234))

mantissa (X) = mantissa(-.56) *10| exponent (-.56) - exponent (10.234) | + mantissa (10.234)

where, |D| represents the modulus of D. You need to work out the rest of the operator logic
yourself based on this understanding.

(2+4
+3+4
)

Ans Marking Scheme: After summing all partial marks awarded across Sections A–D,
The final total must be rounded UP to the nearest 0.5 mark. Sample program can be
found at
https://github.com/suchat-subho/OOPs_CodeReferences/blob/main/CPP/FLOAT_Operator.cpp

1.​ #include <iostream>
2.​ using namespace std;
3.​
4.​

https://github.com/suchat-subho/OOPs_CodeReferences/blob/main/CPP/FLOAT_Operator.cpp

5.​ class FLOAT {
6.​ private:
7.​ int mantissa; // ✔ 0.25 mark: private integer data member
8.​ int exponent; // ✔ 0.25 mark: private integer data member
9.​ // (Total: 0.5 for data members)
10.​
11.​
12.​ // Manual integer shifting: returns m * 10^n using loop
13.​ int shift10(int m, int n) const {
14.​ for (int i = 0; i < n; i++)
15.​ m *= 10;
16.​ return m;
17.​ }
18.​
19.​
20.​public:
21.​ // Constructor
22.​ FLOAT(int m = 0, int e = 0) : mantissa(m), exponent(e) {}
23.​// ✔ 0.5 mark: parameterized constructor with default arguments; 0 otherwise
24.​
25.​
26.​ // Getters
27.​ int getMantissa() const { return mantissa; } // ✔ 0.25 mark
28.​ int getExponent() const { return exponent; } // ✔ 0.25 mark
29.​// (Total: 0.5 for getters); 0 void return in getter
30.​
31.​
32.​ // Setters
33.​ void setMantissa(int m) { mantissa = m; } // ✔ 0.25 mark
34.​ void setExponent(int e) { exponent = e; } // ✔ 0.25 mark
35.​// (Total: 0.5 for setters)
36.​
37.​
38.​ // ========== FLOAT + FLOAT ==========
39.​ FLOAT operator+(const FLOAT &b) const {
40.​ int eX = (exponent < b.exponent) ? exponent : b.exponent;
41.​ // ✔ 0.25 mark: exponent alignment logic
42.​
43.​ int shiftA = exponent - eX;
44.​ int shiftB = b.exponent - eX;

//// Please note: The exponent alignment has to be performed before
mantissa operation. Mere use of formula may not result in accurate code
e.g (Fails when A.exponent < B.exponent). Test counter example:
A=5×10−3,B=2×10−1 = 0.205

45.​ int mA = mantissa;
46.​ int mB = b.mantissa;
47.​
48.​ if (shiftA > 0) mA = shift10(mA, shiftA);
49.​ if (shiftB > 0) mB = shift10(mB, shiftB);
50.​ // ✔ 0.5 mark: integer-based mantissa shifting (no float conversion)
51.​
52.​ int mX = mA + mB; // ✔ 0.25 mark: correct mantissa addition
53.​
54.​ return FLOAT(mX, eX);
55.​ }
56.​ // ✔ Total: 1 mark for operator+; 0.5 if exponent not aligned; 0 otherwise
57.​
58.​
59.​ // ========== FLOAT * FLOAT ==========
60.​ FLOAT operator*(const FLOAT &b) const {
61.​ int mX = mantissa * b.mantissa; // ✔ 0.5 mark
62.​ int eX = exponent + b.exponent; // ✔ 0.5 mark
63.​ return FLOAT(mX, eX);
64.​ }
65.​ // ✔ Total: 1 / 1 mark for operator*
66.​
67.​
68.​ // ========== Comparison (integer-based) ==========
69.​ bool operator==(const FLOAT &b) const {

//// Please note: The exponent alignment has to be performed before
mantissa operation. Mere use of formula may not result in accurate code.

70.​ int eX = (exponent < b.exponent) ? exponent : b.exponent;
71.​
72.​ int shiftA = exponent - eX;
73.​ int shiftB = b.exponent - eX;

74.​
75.​ int mA = mantissa;
76.​ int mB = b.mantissa;
77.​
78.​ if (shiftA > 0) mA = shift10(mA, shiftA);
79.​ if (shiftB > 0) mB = shift10(mB, shiftB);
80.​
81.​ return (mA == mB); // ✔ 1 mark: integer-based comparison
82.​ }
83.​ // ✔ Total: 1 / 1 mark; 0/1 if incorrect
84.​
85.​
86.​ // ========== Assignment ==========
87.​ FLOAT & operator=(const FLOAT &b) {
88.​ if (this != &b) { // ✔ 0.5 mark: self-assignment check
89.​ mantissa = b.mantissa;
90.​ exponent = b.exponent;
91.​ }
92.​ return *this; // ✔ 0.5 mark: returns reference
93.​ }
94.​ // ✔ Total: 1/1 mark, 0.5/1 if Not appropriate return type (e.g. FLOAT &)
95.​
96.​
97.​ // FRIENDS for FLOAT op int
98.​ friend FLOAT operator+(const FLOAT &f, int x); // ✔ 0.5 mark
99.​ friend FLOAT operator*(const FLOAT &f, int x); // ✔ 0.5 mark
100.​ // (Total: 1 for Section C); .5 for wrong argument/ret types but correct

friend syntax.
101.​
102.​
103.​ void print() const {
104.​ cout << mantissa << "e" << exponent;
105.​ }
106.​ };
107.​
108.​
109.​ // FLOAT + int
110.​ FLOAT operator+(const FLOAT &f, int x) {
111.​ FLOAT temp(x, 0); // ✔ 0.5 mark: int converted to FLOAT
112.​ return f + temp; // ✔ 0.5 mark: reuse FLOAT + FLOAT logic
113.​ }
114.​ // ✔ Total: 1 / 1 mark; 0/1 if incorrect
115.​
116.​
117.​ // FLOAT * int
118.​ FLOAT operator*(const FLOAT &f, int x) {
119.​ return FLOAT(f.mantissa * x, f.exponent); // ✔ 1 mark
120.​ }
121.​ // ✔ Total: 1 / 1 mark; 0/1 if incorrect
122.​
123.​ // ===================== MAIN =====================
124.​ int main() {
125.​ FLOAT A(10234, -3); // 10.234
126.​ FLOAT B(-56, -2); // -0.56
127.​
128.​ cout << "A = "; A.print(); cout << endl;
129.​ cout << "B = "; B.print(); cout << endl;
130.​
131.​ FLOAT C = A + B; // ✔ 0.5 mark
132.​ FLOAT D = A * B; // ✔ 0.5 mark
133.​ // (Total: 1 for FLOAT–FLOAT arithmetic)
134.​
135.​ cout << "\n\n(A == B)? " << (A == B ? "YES" : "NO");
136.​ // ✔ 1 mark: comparison demonstration
137.​
138.​ FLOAT E;
139.​ E = A; // ✔ 1 mark: assignment operator demo
140.​
141.​ FLOAT F = A + 5; // ✔ 0.5 mark
142.​ FLOAT G = B * 3; // ✔ 0.5 mark
143.​ // (Total: 1 for FLOAT–int arithmetic)
144.​
145.​ cout << endl;
146.​ return 0;
147.​ }

	Selected AnswerKeys

