Solution

QN | Correct Answer Marking Scheme Note
2A | <int> e 01 Marks for filling each | The answer of this question
int blank Is unique. Thus either full
this->*pmf marks will be awarded or
e 02 Mark for output ZERO.
Output:
Calling the Function:4
2B | p = new T*[CAP] e 02 Marks for filling each
delete[] p; blank
template<typename M>
delete obj;
3A | The program must have | e 02 Marks for base class | e Multiple solutions are
following components. possible, but number of
e 04 Marks for classes and their
e A base class is inherited by intermediate class relationship (diamond
two intermediate classes structure) will be unique.
e 01 Mark for final derived Thus evaluate for
e A final derived class class. structure of the program.
inherits from both
intermediate classes e Deduct 04 marks, if
virtual base class is not
e This creates ambiguity used in multiple
because two copies of the inheritance.
base class exist. Thus the
multiple inheritance must
be done through virtual
base classes.
3B | (i) A() e 02 marks for the correct | ¢ Deduct full marks, if
Caught int in risky() output of part(i) outputs are not correct.
~A()
Unknown e 01 marks for the e Give full marks in
explanation of part (i) explanation.
(ii) AQ)
~A() e 02 marks for the correct | e If output is correct, but in

MyError occurred

output of part (ii)

e 01 marks for the
explanation of part (ii)

wrong sequence, then
deduct full marks of the
output.

Selected AnswerKeys

Q4

Write a C++ program to define a class FLOAT with:

A. Two private integer variables: mantissa and exponent and a parameterized constructor with
default parameters to initialize both members. Write appropriate getter and setter methods.

B. Overload the following operators as member functions

i. Arithmetic operators: + and * (to achieve floating point arithmetic)
ii. Comparison operator: ==

iii. Assignment operator: =

C. Overload arithmetic operators (+, *) to work between a FLOAT object and an integer (int)
using a friend function.

D. Write a main() function to demonstrate:

i. All the arithmetic operations between two FLOAT objects
ii. Comparison using ==

iii. Assignment using =

iv. Arithmetic between a FLOAT object and an int

Note: (i) You must perform all arithmetic and comparison operations directly on the mantissa
and exponent integers stored inside the class FLOAT.

(i) You must NOT convert the FLOAT numbers into C++ built-in floating-point types (like float
or double) within any of your operator implementations.

(iii) A FLOAT number N is internally represented as N=mantissax10°*°""_For example, —0.56
is represented as mantissa=-56 and exponent=—-2, while 10.234 is represented as
mantissa=10234 and exponent=—3. Assume the addition of these numbers will be a FLOAT X,
then:

exponent(X)= min (exponent(-.56) , exponent(10.234))
mantissa (X) = mantissa(-.56) *10! exonent (--36) - exponent (10234) | + magntissa (10.234)

where, |D| represents the modulus of D. You need to work out the rest of the operator logic
yourself based on this understanding.

(2+4
+3+4

Ans

Marking Scheme: After summing all partial marks awarded across Sections A-D,

The final total must be rounded UP to the nearest 0.5 mark. Sample program can be
found at

https://github.com/suchat-subho/00Ps CodeReferences/blob/main/CPP/FLOAT Operator.cpp

1. #include <iostream>
2. using namespace std;
3.

4

https://github.com/suchat-subho/OOPs_CodeReferences/blob/main/CPP/FLOAT_Operator.cpp

5 class FLOAT {

6. private:

7. int mantissa; // ¢ 0.25 mark: private integer data member
8 int exponent; // Vv 0.25 mark: private integer data member
9. T 1l: for m r

10.

11.

12. // Manual integer shifting: returns m * 10”n using loop

13. int shiftl0(int m, int n) const {

14. for (int 1 = 0; 1 < n; 1i++)

15. m *= 10;

16. return m;

17. }

18.

19.

20. public:

21. // Constructor

22. FLOAT (int m = 0, int e = 0) : mantissa(m), exponent(e) {}

23.// ¢ 0.5 mark: parameterized constructor with default arguments; 0 otherwise

26. // Getters

27. int getMantissa() const { return mantissa; } // v 0.25 mark

28. int getExponent() const { return exponent; } // ¢V 0.25 mark

29. T l: 0.5 for rs):; 0 void r rn in r

30.

31.

32. // Setters

33. void setMantissa(int m) { mantissa = m; } // v 0.25 mark

34. void setExponent(int e) { exponent = e; } // ¢V 0.25 mark

35.// (Total: 0.5 for setters)

36.

37.

38. // ========== FLOAT + FLOAT ==========

39. FLOAT operator+ (const FLOAT &b) const {

40. int eX = (exponent < b.exponent) ? exponent : b.exponent;

41. // Vv 0.25 mark: exponent alignment logic

42 .

43. int shiftA = exponent - eX;

44. int shiftB = b.exponent - eX;
//// Please note: The exponent alignment has to be performed before
mantissa operation. Mere use of formula may not result in accurate code
e.g (Fails when A.exponent < B.exponent). Test counter example:
A=5x107%,B=2x10"= 0.205

45. int mA = mantissa;

46. int mB = b.mantissa;

47.

48. if (shiftA > 0) mA = shiftl0(mA, shifta);

49. if (shiftB > 0) mB = shiftl0(mB, shiftB);

50. // Vv 0.5 mark: integer-based mantissa shifting (no float conversion)

51.

52. int mX = mA + mB; // ¢ 0.25 mark: correct mantissa addition

53.

54. return FLOAT (mX, eX);

55. }

56. [/ ¢ Total: 1 mark for operator+; 0.5 if exponent not aligned:; 0 otherwise
57.

58.

59. // ========== FLOAT * FLOAT ==========

60. FLOAT operator* (const FLOAT &b) const {

61. int mX = mantissa * b.mantissa; // ¢V 0.5 mark

62. int eX = exponent + b.exponent; // vV 0.5 mark

63. return FLOAT (mX, eX);

64. }

65. // V Total: 1 / 1 mark for operator*

66.

67.

68. // ========== Comparison (integer-based) ==========

69. bool operator==(const FLOAT &b) const ({
//// Please note: The exponent alignment has to be performed before
mantissa operation. Mere use of formula may not result in accurate code.

70. int eX = (exponent < b.exponent) ? exponent : b.exponent;

71.

72. int shiftA = exponent - eX;

73. int shiftB = b.exponent - eX;

74.

75. int mA = mantissa;

76. int mB = b.mantissa;

77.

78. if (shiftA > 0) mA = shiftl0(mA, shifta);

79. if (shiftB > 0) mB = shiftl0 (mB, shiftB);

80.

81. return (mA == mB) ; // ¢V 1 mark: integer-based comparison

82. }

83. // ¥ Total: 1 / 1 mark: 0/1 if incorrect

84.

85.

86. // ========== Assignment ==========

87. FLOAT & operator=(const FLOAT &b) {

88. if (this != &b) { // ¢ 0.5 mark: self-assignment check

89. mantissa = b.mantissa;

90. exponent = b.exponent;

91. }

92. return *this; // ¢V 0.5 mark: returns reference

93. }

94. v T l: 1/1 mark 1 if N ropri r rn FLOAT

95.

96.

97. // FRIENDS for FLOAT op int

98. friend FLOAT operator+(const FLOAT &f, int x); // ¢ 0.5 mark
// ¢ 0.5 mark

99. friend FLOAT operator* (const FLOAT &f, int x);

100. // (Total: 1 for Section C): .5 for wrong argument/ret types but correct

friend syntax.
101.

102.

103. void print () const {

104. cout << mantissa << "e" << exponent;
105. }

106. b

107.

108.

109. // FLOAT + int

110. FLOAT operator+(const FLOAT &f, int x) {

111. FLOAT temp(x, 0); // ¢ 0.5 mark: int converted to FLOAT
112. return £ + temp; // Vv 0.5 mark: reuse FLOAT + FLOAT logic
113. }

114. [/ ¢ Total: 1 / 1 mark: 0/1 if incorrect

115.

116.

117. // FLOAT * int
118. FLOAT operator* (const FLOAT &f, int x) {

119. return FLOAT (f.mantissa * x, f.exponent); // v 1 mark
120. }

121. // ¢ Total: 1 / 1 mark; 0/1 if incorrect

122.

123. // MAIN

124. int main() {

125. FLOAT A (10234, -3); // 10.234

126. FLOAT B(-56, -2); // -0.56

127.

128. cout << "A = "; A.print(); cout << endl;

129. cout << "B = "; B.print(); cout << endl;

130.

131. FLOAT C = A + B; // ¢V 0.5 mark

132. FLOAT D = A * B; // Vv 0.5 mark

133. // (Total: 1 for FLOAT-FLOAT arithmetic)

134.

135. cout << "\n\n(A == B)? " << (A == B ? "YES" : "NO");
136. // ¥ 1 mark: comparison demonstration

137.

138. FLOAT E;

139. E = A; // ¢V 1 mark: assignment operator demo
140.

141. FLOAT F = A + 5; // ¢ 0.5 mark

142. FLOAT G = B * 3; // vV 0.5 mark

143. [/ (Total: 1 for FLOAT-int arithmetic)

144.

145. cout << endl;

146. return 0;

147. }

	Selected AnswerKeys

