Clue Card of Unit-1: OOP with Memory Concepts

1. Structure vs Class

. struct: public by default (light blue)
. class: private by default (light green)

Example Code snippet:

struct Point { int x, y; };
class Person { string name; int age; public: Person(string n,int a):name(n),a

ge(a){} };

2. Classes & Objects

. Stack vs Heap (highlight memory types with colors)

. Code snippet:

MyClass obj;

// Static memory from Stack

MyClass *p = new MyClass(); // Dynamic from Heap
obj.method(); p->method();

3. Namespaces: Avoid name

Code snippet: namespace A { void f(); }

conflicts A::F();
using namespace A; f()
6. Types of Function Calling
Metho Effect on
d Code Snippet Effect / Difference Memory Remark
Callby | void fun(int x){ Copy of variable is passed, Caller - Copy Copy, safe,
Value X = 20; } int Changes don’t affect original, - Function unchanged
main(){ int a Safe but inefficient for large (no effect back)
= 10; fun(a); objects.
cout << a; // 1@
}
Callby | cpp void fun(int Address of variable passed, Caller & Uses
Pointe | *p){ *p = 20; } Changes affect original, Risk of | Address <> address,
r int main(){ int invalid/null pointers, Common Function original
a = 18; fun(&a); | forarrays & dynamic memory. | (* modifies changes,
cout << a; // 20 caller) needs * and
} &.
Callby | cpp void fun(int Variable passed as alias, Caller <> Alias Alias, original
Refere | &r){ r = 20;} Changes affect original, Safer &> Function changes,
nce int main(){int a than pointers, more efficient (direct effect) clean syntax.
= 10; fun(a); than value, Preferred in
cout << a; // modern C++.
20}

7. Passing/Returning Objects
. Pass by reference: void f(MyClass &o)

. Return by value:

MyClass f(){ return obj; }

8. Array of Objects
MyClass arr[5];

arr[0].method();

9. Static Keyword

Concept

Explanation

Code Snippet

Key Difference / Note

Definition

static is a storage class
specifier. Variables exist
for the entire program,
not destroyed when
scope ends.

NOT APPLICABLE

Lifetime = whole
program. Scope
depends on
declaration.

within the file.

Concept Explanation Code Snippet Key Difference / Note
Local Static Declared inside a void fun(){ static int Unlike normal locals,
Variable function, retains value x=0; X++; cout<<x; } int | not re-initialized each
between calls. main(){ fun(); fun(); } call.

// Output: 1 2
Static Data Shared by all objectsofa | class Test{ static int Memory shared, not
Member class. Only one copy count; }; int per object.
(Class) exists. Test::count=0;
Static Belongs to class, not class Test{ static void Called with
Member objects. Can access only show(); }; Test::show(); | ClassName::func().
Function static members.
Global Static Declared outside static int g=10; // Provides internal
Variable functions, visible only file-scope only linkage (not accessible

in other files).

Local vs Local
Static

Local - recreated each call. Static local > persists across calls. Useful for counters,

caching.

Instance Var

Instance -> one copy per object. Static - one copy for class. Saves memory, common

vs Static values.

Member

Global vs Global - accessible across files. Global static - restricted to current file. Prevents
Global Static name conflicts.

10. Friend Keyword

class as friend, giving access to
its private/protected
members.

Aspect Explanation Code Snippet Key Notes

Definition friend keyword allows non- class A{ intx; Friendship gives
member function or class to friend void special access.
access private/protected show(A&); //
members of another class. friend function };

Friend Non-member function with void show(A &a){ Declared inside

Function access to class’s private cout<<a.x; } class with friend.
members.

Friend Class | One class can declare another class B; class A { Friendship is not

friend class B; };

mutual unless
declared both
ways.

Access: Can access private & protected data of the class. Called like normal function, not with object.
Use cases: Operator overloading, sharing data between classes, helper functions. Common for <<, >>

operators.

Limitations: Breaks encapsulation, should be used sparingly. One-way relationship, not inherited.

10. Pointers & this

. Pointer: p->member

11. Dynamic Initialization & Memory
MyClass *p = new MyClass(args);

. this pointer: this->member
. Diagram: object -> pointer flow

delete p;
delete[] arr;

Note: Always free heap memory

Dr. Suresh Raikwar

Clue Card of Unit-2: Constructor and Destructor

Constructors & Its Types
o Special member function with the same name as the class.
e Automatically called when an object is created.

Types:

1. Default Constructor — No parameters.

2. Parameterized Constructor — With parameters.

3. Copy Constructor — Copies another object.

Constructor Overloading: Multiple constructors with different parameters. Allows
objects to be initialized in different ways.
o Rule-1: Different number of parameters.
o Rule-2: Different types of parameters.
Note: if both rules violated, then overloading is not possible.
Example: class MyClass{ public: MyClass() { /* default */ }
MyClass(int a) { /* parameterized */ }
MyClass(int a, int b) { /* two params */ }};
Constructors in Array of Objects:
o When an array of objects is created, the constructor is called for each element.
o Default constructor is used if no arguments are provided.
Example:
class Example {int i; float j;
public:
Example() { cout << "Constructor called\n"; }
Example(int i, float j) { this—i=i; this—j=j; cout << "Constructor called\n"; }};

Example arr[3]; // Constructor called 3 times

Example arr[2]={Example(), Example(2,5.3)}; //zero and parameterized constructor will
be called.

Constructors with Default Arguments
e Parameters can have default values.
e Acts like both default and parameterized constructor.
Example: class Example { public: Example(inta =0, intb=0){/*usea, b*/ } };

Example obj1; /I a=0, b=0
Example obj2(5); // a=5, b=0
Example obj3(3,4); // a=3, b=4

Dynamic Constructor

e Objects created at runtime using new.

e Constructor is called when the abject is allocated dynamically.

¢ Dynamic constructor may be zero-argument, parameterized or copy type.
Example: class Example { int *p;
public: Example(int val) { p=new int; *p=val; cout << "Value: " << val <<endl; } };

Example e(5); // dynamic constructor will be called.

Destructor
e Special member function with ~ before class name.
e Called automatically when an object is destroyed.
e Used to free resources like memory or files.
Example: class Example {
public:
~Example() { cout << "Destructor called\n"; } };

const Keyword: Ensures data integrity and prevents modification.

e const with Data Member: Data can't be modified after initialization.
Example: class Example { const int Xx;
public: Example(int val) : x(val) { } };

e const with Member Function: Function doesn’t modify object’s state.
Example: class Example { public: int getValue() const { return 10; } };

e const with Object: Entire object is constant — only const functions can be
called.
Example: const Example obj;

obj.getValue(); // allowed only if getValue() is const

Dynamic and Static memory Allocation:
class Dynamic_Memory{ inti;
public: Dynamic_Memory(){i=10;cout<<"Constructor'<<endl;}
void display(){cout<<"i="<<i<<endl; }
~Dynamic_Memory(){cout<<"Destructor'<<endl;}
b
int main() { Dynamic_Memory o01; //static memory allocation
ol.display();
Dynamic_Memory *o2=nullptr; //This does not call default constructor.
02= new Dynamic_Memory(); //dynamic memory allocation;
02—display(); delete 02; return 0;}

Clue Card of Unit-3: Inheritance

1. Forms of Inheritance: Inheritance allows a class to acquire properties (data
members and member functions) from another class. Below are its forms and access
modes:

Form of Description Access Modes Code Example
Inheritanc
e

Single A derived class Public, class Base { public: int a;};

Inheritanc | inherits from a single Private, class Derived : public Base {};

e base class. Protected

Multiple A derived class Public, class Basel { public: int a; };

Inheritanc | inherits from more Private, class Base2 { public: int b; };

e than one base class. Protected class Derived : public Basel, public
Base2 {};

Multilevel | A derived class Public, class Base { public: int a;};

Inheritanc | inherits from a base Private, class Derivedl : public Base {};

e class, and another Protected class Derived2 : public Derivedl {};

derived class inherits
from it.

Hierarchic | Multiple derived Public, class Base { public: int a;};

al classes inherit from a Private, class Derivedl : public Base {};

Inheritanc | single base class. Protected class Derived2 : public Base {};

e

Hybrid Combination of two or Public, class Base { public: int a; };

Inheritanc | more types of Private, class Derivedl : public Base {};

e inheritance. Protected class Derived2 : public Derivedl {};
class Derived3 : public Base {};

2. Inheritance with Constructor and Destructor: Constructors and destructor are
called in a specific order in inheritance.
e Base class constructors are invoked first, followed by derived class
constructors.

e Destructors are called in reverse order.

Example:

class Base { public: Base() {cout << “Base Constructor called” << endl;}

"Base() { cout << “Base Destructor called” << endl; } };
class Derived : public Base { public: Derived() { cout << “Derived
Constructor called” << endl; }

“Derived() { cout << “Derived Destructor called” << endl; }

}

int main() {
Derived obj;
return 0;

}

3. Benefits and Limitations of Inheritance

Benefits:
e (Code reusability to reduce redundancy
e Extensibility allows new functionalities to be added easily.
e Data Hiding can be achieved using access specifiers
(private/protected)
e Method Overriding through polymorphism.

Limitations:
e Increased complexity in multi-level and multiple inheritance

e Dependency on base class: Any changes in base class affect
derived classes.

e Diamond problem: Ambiguity arises in multiple inheritance
e Tight coupling between classes may reduce flexibility.
e Debugging can be harder due to complex relationships.

Special Clue Card: this Pointer

What is “this" Pointer?
e [tis an implicit pointer available inside all non-static member
functions.
e Points to the current object invoking the function.
e Used to access the calling object’s members.

Characteristics
e Available in all non-static member functions
o Holds the address of the object that invoked the function

e Used to resolve naming conflicts between parameters and
class members

Common Uses of “this™ Pointer
1. Access members of the current object:
class Example {
int x;
public:
void setX(int x) {
this->x = x; // distinguishes between member and parameter

¥

2. Return object from a member function:
Example& setX(int x) {

this->x = x;

return *this;

}

3. Chain member function calls: obj.setX(10).setY(20);

4. Compare objects:

bool isSame(Example& other) {

return this == &other;

Important Notes
¢ “this’ pointer is automatically passed to non-static functions
e Cannot be used in static member functions (as static
functions are not tied to a particular object)
e Useful in operator overloading, fluent interfaces, and
avoiding shadowing between member variables and
function parameters

Example Code
class Example {
intx;
public:
Example(int x) { this->x =x; }

Example& setX(int x) {
this->x =x;
return *this;

}

void show() {
cout << "x =" << this->x << endl;

}
5

int main() {
Example obj(5);
obj.setX(10).setX(20);
obj.show();
return 0;

}

	Clue Card of Unit-2: Constructor and Destructor
	Constructors & Its Types
	Constructors in Array of Objects:
	 When an array of objects is created, the constructor is called for each element.
	 Default constructor is used if no arguments are provided.
	Constructors with Default Arguments
	Dynamic Constructor
	Destructor
	1. Forms of Inheritance: Inheritance allows a class to acquire properties (data members and member functions) from another class. Below are its forms and access modes:
	2. Inheritance with Constructor and Destructor: Constructors and destructor are called in a specific order in inheritance.
	Example:

	3. Benefits and Limitations of Inheritance
	Benefits:
	 Code reusability to reduce redundancy
	 Extensibility allows new functionalities to be added easily.
	 Data Hiding can be achieved using access specifiers (private/protected).
	 Method Overriding through polymorphism.
	Limitations:
	 Increased complexity in multi-level and multiple inheritance.
	 Dependency on base class: Any changes in base class affect derived classes.
	 Diamond problem: Ambiguity arises in multiple inheritance.
	 Tight coupling between classes may reduce flexibility.
	 Debugging can be harder due to complex relationships.

	What is `this` Pointer?
	Characteristics
	Common Uses of `this` Pointer
	Important Notes
	Example Code

