

Clue Card of Unit-1: OOP with Memory Concepts

1. Structure vs Class
 struct: public by default (light blue)

 class: private by default (light green)
Example Code snippet:
struct Point { int x, y; };
class Person { string name; int age; public: Person(string n,int a):name(n),a
ge(a){} };

2. Classes & Objects
 Stack vs Heap (highlight memory types with colors)

 Code snippet:
MyClass obj; // Static memory from Stack
MyClass *p = new MyClass(); // Dynamic from Heap
obj.method(); p->method();

3. Namespaces: Avoid name

conflicts

Code snippet: namespace A { void f(); }

A::f();
using namespace A; f()

--
6. Types of Function Calling

Metho
d Code Snippet Effect / Difference

Effect on
Memory Remark

Call by
Value

void fun(int x){
x = 20; } int
main(){ int a
= 10; fun(a);

cout << a; // 10
}

Copy of variable is passed,
Changes don’t affect original,
Safe but inefficient for large
objects.

Caller → Copy
→ Function

(no effect back)

Copy, safe,
unchanged

Call by
Pointe
r

cpp void fun(int
*p){ *p = 20; }
int main(){ int
a = 10; fun(&a);
cout << a; // 20
}

Address of variable passed,
Changes affect original, Risk of
invalid/null pointers, Common
for arrays & dynamic memory.

Caller ↔
Address ↔
Function

(* modifies
caller)

Uses
address,
original
changes,
needs * and
&.

Call by
Refere
nce

cpp void fun(int
&r){ r = 20;}
int main(){int a
= 10; fun(a);
cout << a; //
20}

Variable passed as alias,
Changes affect original, Safer
than pointers, more efficient
than value, Preferred in
modern C++.

Caller ↔ Alias
↔ Function

(direct effect)

Alias, original
changes,
clean syntax.

--
7. Passing/Returning Objects

 Pass by reference: void f(MyClass &o)

 Return by value: MyClass f(){ return obj; }

8. Array of Objects
MyClass arr[5];
arr[0].method();

--
9. Static Keyword

Concept Explanation Code Snippet Key Difference / Note

Definition static is a storage class
specifier. Variables exist
for the entire program,
not destroyed when
scope ends.

NOT APPLICABLE Lifetime = whole
program. Scope
depends on
declaration.

Concept Explanation Code Snippet Key Difference / Note

Local Static
Variable

Declared inside a
function, retains value
between calls.

void fun(){ static int
x=0; x++; cout<<x; } int
main(){ fun(); fun(); }
// Output: 1 2

Unlike normal locals,
not re-initialized each
call.

Static Data
Member
(Class)

Shared by all objects of a
class. Only one copy
exists.

class Test{ static int
count; }; int
Test::count=0;

Memory shared, not
per object.

Static
Member
Function

Belongs to class, not
objects. Can access only
static members.

class Test{ static void
show(); }; Test::show();

Called with
ClassName::func().

Global Static
Variable

Declared outside
functions, visible only
within the file.

static int g=10; //
file-scope only

Provides internal
linkage (not accessible
in other files).

Local vs Local
Static

Local → recreated each call. Static local → persists across calls. Useful for counters,
caching.

Instance Var
vs Static
Member

Instance → one copy per object. Static → one copy for class. Saves memory, common
values.

Global vs
Global Static

Global → accessible across files. Global static → restricted to current file. Prevents
name conflicts.

10. Friend Keyword

Aspect Explanation Code Snippet Key Notes

Definition friend keyword allows non-
member function or class to
access private/protected
members of another class.

class A { int x;
friend void
show(A&); //
friend function };

Friendship gives
special access.

Friend
Function

Non-member function with
access to class’s private
members.

void show(A &a){
cout<<a.x; }

Declared inside
class with friend.

Friend Class One class can declare another
class as friend, giving access to
its private/protected
members.

class B; class A {
friend class B; };

Friendship is not
mutual unless
declared both
ways.

Access: Can access private & protected data of the class. Called like normal function, not with object.
Use cases: Operator overloading, sharing data between classes, helper functions. Common for <<, >>
operators.
Limitations: Breaks encapsulation, should be used sparingly. One-way relationship, not inherited.

--

10. Pointers & this
 Pointer: p->member

 this pointer: this->member

 Diagram: object -> pointer flow

11. Dynamic Initialization & Memory
MyClass *p = new MyClass(args);
delete p;
delete[] arr;
Note: Always free heap memory

Dr. Suresh Raikwar

Clue Card of Unit-2: Constructor and Destructor

Constructors & Its Types

 Special member function with the same name as the class.
 Automatically called when an object is created.

Types:

1. Default Constructor → No parameters.
2. Parameterized Constructor → With parameters.

3. Copy Constructor → Copies another object.

Constructor Overloading: Multiple constructors with different parameters. Allows
objects to be initialized in different ways.

 Rule-1: Different number of parameters.
 Rule-2: Different types of parameters.

Note: if both rules violated, then overloading is not possible.

Example: class MyClass{ public: MyClass() { /* default */ }
 MyClass(int a) { /* parameterized */ }

 MyClass(int a, int b) { /* two params */ }};

Constructors in Array of Objects:

 When an array of objects is created, the constructor is called for each element.

 Default constructor is used if no arguments are provided.
Example:
class Example { int i; float j;

public:

 Example() { cout << "Constructor called\n"; }

 Example(int i, float j) { this→i=i; this→j=j; cout << "Constructor called\n"; }};

Example arr[3]; // Constructor called 3 times

Example arr[2]={Example(), Example(2,5.3)}; //zero and parameterized constructor will

be called.

Constructors with Default Arguments

 Parameters can have default values.
 Acts like both default and parameterized constructor.

Example: class Example { public: Example(int a = 0, int b = 0) { /* use a, b */ } };

Example obj1; // a=0, b=0

Example obj2(5); // a=5, b=0

Example obj3(3,4); // a=3, b=4

Dynamic Constructor

 Objects created at runtime using new.
 Constructor is called when the object is allocated dynamically.
 Dynamic constructor may be zero-argument, parameterized or copy type.

Example: class Example { int *p;

public: Example(int val) { p=new int; *p=val; cout << "Value: " << val << endl; } };

Example e(5); // dynamic constructor will be called.

Destructor

 Special member function with ~ before class name.
 Called automatically when an object is destroyed.
 Used to free resources like memory or files.

Example: class Example {

public:
 ~Example() { cout << "Destructor called\n"; } };

const Keyword: Ensures data integrity and prevents modification.
 const with Data Member: Data can't be modified after initialization.

 Example: class Example { const int x;

 public: Example(int val) : x(val) { } };

 const with Member Function: Function doesn’t modify object’s state.
 Example: class Example { public: int getValue() const { return 10; } };

 const with Object: Entire object is constant → only const functions can be

called.
 Example: const Example obj;

 obj.getValue(); // allowed only if getValue() is const

Dynamic and Static memory Allocation:

class Dynamic_Memory{ int i;

 public: Dynamic_Memory(){i=10;cout<<"Constructor"<<endl;}
 void display(){cout<<"i="<<i<<endl; }

 ~Dynamic_Memory(){cout<<"Destructor"<<endl;}

};

int main() { Dynamic_Memory o1; //static memory allocation
 o1.display();

 Dynamic_Memory *o2=nullptr; //This does not call default constructor.

 o2= new Dynamic_Memory(); //dynamic memory allocation;
 o2→display(); delete o2; return 0;}

Clue Card of Unit-3: Inheritance

1. Forms of Inheritance: Inheritance allows a class to acquire properties (data

members and member functions) from another class. Below are its forms and access

modes:

Form of

Inheritanc

e

Description Access Modes Code Example

Single

Inheritanc

e

A derived class

inherits from a single

base class.

Public,

Private,

Protected

class Base { public: int a;};

class Derived : public Base {};

Multiple

Inheritanc

e

A derived class

inherits from more

than one base class.

Public,

Private,

Protected

class Base1 { public: int a; };

class Base2 { public: int b; };

class Derived : public Base1, public

Base2 {};

Multilevel

Inheritanc

e

A derived class

inherits from a base

class, and another

derived class inherits

from it.

Public,

Private,

Protected

class Base { public: int a;};

class Derived1 : public Base {};

class Derived2 : public Derived1 {};

Hierarchic

al

Inheritanc

e

Multiple derived

classes inherit from a

single base class.

Public,

Private,

Protected

class Base { public: int a;};

class Derived1 : public Base {};

class Derived2 : public Base {};

Hybrid

Inheritanc

e

Combination of two or

more types of

inheritance.

Public,

Private,

Protected

class Base { public: int a; };

class Derived1 : public Base {};

class Derived2 : public Derived1 {};

class Derived3 : public Base {};

2. Inheritance with Constructor and Destructor: Constructors and destructor are

called in a specific order in inheritance.

 Base class constructors are invoked first, followed by derived class

constructors.

 Destructors are called in reverse order.

Example:

class Base { public: Base(){cout << "Base Constructor called" << endl;}

 ~Base() { cout << "Base Destructor called" << endl; } };

class Derived : public Base { public: Derived() { cout << "Derived

Constructor called" << endl; }

 ~Derived() { cout << "Derived Destructor called" << endl; }

};

int main() {

 Derived obj;

 return 0;

}

3. Benefits and Limitations of Inheritance

Benefits:

 Code reusability to reduce redundancy

 Extensibility allows new functionalities to be added easily.

 Data Hiding can be achieved using access specifiers

(private/protected).

 Method Overriding through polymorphism.

Limitations:

 Increased complexity in multi-level and multiple inheritance.

 Dependency on base class: Any changes in base class affect

derived classes.

 Diamond problem: Ambiguity arises in multiple inheritance.

 Tight coupling between classes may reduce flexibility.

 Debugging can be harder due to complex relationships.

Special Clue Card: this Pointer

What is `this` Pointer?

 It is an implicit pointer available inside all non-static member
functions.

 Points to the current object invoking the function.

 Used to access the calling object’s members.

Characteristics

 Available in all non-static member functions

 Holds the address of the object that invoked the function

 Used to resolve naming conflicts between parameters and
class members

Common Uses of `this` Pointer
1. Access members of the current object:

class Example {

 int x;

public:

void setX(int x) {

 this->x = x; // distinguishes between member and parameter

}};

2. Return object from a member function:

Example& setX(int x) {

 this->x = x;

 return *this;

}

3. Chain member function calls: obj.setX(10).setY(20);

4. Compare objects:

bool isSame(Example& other) {

 return this == &other;

}

Important Notes

 `this` pointer is automatically passed to non-static functions

 Cannot be used in static member functions (as static
functions are not tied to a particular object)

 Useful in operator overloading, fluent interfaces, and
avoiding shadowing between member variables and
function parameters

Example Code
class Example {
 int x;
public:
 Example(int x) { this->x = x; }

 Example& setX(int x) {
 this->x = x;
 return *this;
 }

 void show() {
 cout << "x = " << this->x << endl;
 }
};

int main() {
 Example obj(5);
 obj.setX(10).setX(20);

 obj.show();

 return 0;

}

	Clue Card of Unit-2: Constructor and Destructor
	Constructors & Its Types
	Constructors in Array of Objects:
	 When an array of objects is created, the constructor is called for each element.
	 Default constructor is used if no arguments are provided.
	Constructors with Default Arguments
	Dynamic Constructor
	Destructor
	1. Forms of Inheritance: Inheritance allows a class to acquire properties (data members and member functions) from another class. Below are its forms and access modes:
	2. Inheritance with Constructor and Destructor: Constructors and destructor are called in a specific order in inheritance.
	Example:

	3. Benefits and Limitations of Inheritance
	Benefits:
	 Code reusability to reduce redundancy
	 Extensibility allows new functionalities to be added easily.
	 Data Hiding can be achieved using access specifiers (private/protected).
	 Method Overriding through polymorphism.
	Limitations:
	 Increased complexity in multi-level and multiple inheritance.
	 Dependency on base class: Any changes in base class affect derived classes.
	 Diamond problem: Ambiguity arises in multiple inheritance.
	 Tight coupling between classes may reduce flexibility.
	 Debugging can be harder due to complex relationships.

	What is `this` Pointer?
	Characteristics
	Common Uses of `this` Pointer
	Important Notes
	Example Code

